Potential use of the MSG derived UV climatology

COST726 WG1-WG2 meeting Brussels, January 29-30, 2007

The MSG derived climatology

It consists in daily erythemal dose maps

- over Europe
- from January 1st 1984
- spatial resolution : 0.05 deg.

From which can be generated

- monthly averaged daily dose maps
- "climatological average" daily dose maps for each month

Example : March

AVERAGE ERYTHEMAL DAILY DOSE IN MARCH 84

AVERAGE ERYTHEMAL DAILY DOSE IN MARCH

Difference (relative) between March 84 and the climatological average

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (SAT-CLIMAV)/SAT MARCH 1984

Variability of erythemal dose over 22 years: March

DEVIATION OF THE MONTHLY AVERAGED ERYTHEMAL DAILY DOSE WITH RESPECT TO THE 1984-2005 MEAN (MARCH)

To which extent is it possible to spatially interpolate

stations values to reconstruct a map of

monthly averaged daily dose for a given year

?

Correlation pattern, Potsdam - March

SPATIAL CORRELATION COEFFICIENT, Potsdam MARCH

Correlation pattern, Bergen - March

SPATIAL CORRELATION COEFFICIENT, Bergen MARCH

RCH E N

ihi

Correlation pattern, Thessaloniki - March

SPATIAL CORRELATION COEFFICIENT, Thessaloniki MARCH

Physical and Chemical Exposure Unit

Correlation pattern, Davos - March

SPATIAL CORRELATION COEFFICIENT, Davos MARCH

Correlation pattern, Potsdam - July

SPATIAL CORRELATION COEFFICIENT, Potsdam JULY

RCH E N

Correlation pattern, Bergen - July

SPATIAL CORRELATION COEFFICIENT, Bergen JULY

RCH E N

Correlation pattern, Thessaloniki - July

SPATIAL CORRELATION COEFFICIENT, Thessaloniki JULY

ARCH RE 310N

Correlation pattern, Davos - July

SPATIAL CORRELATION COEFFICIENT, Davos JULY

RCH E N

Station interpolation: choice of stations

Selected area: 10W-30E 34N-74N

Divided in 4x4 deg. boxes

Select one station per box

as close as possible from the box center using a database of real meteorological stations including Potsdam, Bergen, Thessaloniki and Davos

Result: 87 stations

Station interpolation: choice of stations

STATIONS SELECTED FOR INTERPOLATION

Best correlation coefficient, 87 stations, March

RCH E N

MAXIMAL SPATIAL CORRELATION COEFFICIENT, 87 stations, MARCH

Best correlation coefficient, 87 stations, July

MAXIMAL SPATIAL CORRELATION COEFFICIENT, 87 stations, JULY

-ihl

،RCH الح الح.

Interpolation formula (for each map pixel)

select the 9 best correlated stations discard those for which the correlation coefficient r_i is less than 80% of the best correlation coefficient

hence N selected stations with 1<N<9

Set the pixel value (V_{pix}) to:

$$V_{pix} = C_{pix} \times \left(\sum_{0}^{N} w(r_i) \times \frac{V_i}{C_i}\right) / \left(\sum_{0}^{N} w(r_i)\right)$$

with $w(r) = tg(\frac{\pi}{2} \times r)$

C being the climatological average for the month

Satellite derived and station interpolated, March 84

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (SAT-CLIMAV)/SAT MARCH 1984 DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONS.-CLIMAV)/RECONS. MARCH 1984

Satellite derived and station interpolated, March 84

Difference between satellite derived and station interpolated, March 84

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONSTRUCTED-SAT)/SAT, MARCH 1984

Physical and Chemical Exposure Unit

Satellite derived and station interpolated, March 96

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (SAT-CLIMAV)/SAT MARCH 1996

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONS.-CLIMAV)/RECONS. MARCH 1996

Satellite derived and station interpolated, March 96

Difference between satellite derived and station interpolated, March 96

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONSTRUCTED-SAT)/SAT, MARCH 1996

Physical and Chemical Exposure Unit

Satellite derived and station interpolated. March 97

-50-40-30-20-10 0 +10+20+30+40+50Difference [%]

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE

(SAT-CLIMAV)/SAT MARCH 1997

> -50-40-30-20-10 0 +10+20+30+40+50 Difference [%]

Institute for Health and Consumer Protection Physical and Chemical Exposure Unit

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONS.-CLIMAV)/RECONS. MARCH 1997

Satellite derived and station interpolated, March 97

Difference between satellite derived and station interpolated, March 97

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONSTRUCTED-SAT)/SAT, MARCH 1997

Physical and Chemical Exposure Unit

Satellite derived and station interpolated, July 84

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE

(RECONS.-CLIMAV)/RECONS. JULY 1984

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (SAT-CLIMAV)/SAT JULY 1984

Satellite derived and station interpolated, July 84

ihp

Difference between satellite derived and station interpolated, July 84

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONSTRUCTED-SAT)/SAT, JULY 1984

Satellite derived and station interpolated, July 94

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (SAT-CLIMAV)/SAT JULY 1994

-50-40-30-20-10 0 +10+20+30+40+50 Difference [%] DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONS.-CLIMAV)/RECONS. JULY 1994

Satellite derived and station interpolated, July 94

Difference between satellite derived and station interpolated, July 94

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONSTRUCTED-SAT)/SAT, JULY 1994

Physical and Chemical Exposure Unit

Satellite derived and station interpolated, July 2000

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE

(RECONS.-CLIMAV)/RECONS. JULY 2000

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (SAT-CLIMAV)/SAT JULY 2000

Satellite derived and station interpolated, July 2000

Difference between satellite derived and station interpolated, July 2000

DIFFERENCE IN AVERAGE ERYTHEMAL DOSE (RECONSTRUCTED-SAT)/SAT, JULY 2000

Physical and Chemical Exposure Unit

