

Aristotle University of Thessaloniki

Calculations of the human Vitamin D exposure from UV spectral measurements at three European stations*

> Melina Zempila mzempila@auth.gr

* A. Kazantzidis et al. (2008), Journal of Photochemical and Photobiological Sciences

Contents

- Short Introduction
- Climatology of Vitamin D dose
- Vitamin D dose rates during the day
- Minimum recommended exposure for Vitamin D production
- Relationship between Vitamin D and Erythemal dose rates
- Conclusions

Short Introduction (1/2)

□ Solar UVB radiation:

Dangers

Cataracts and corneal injuries

Non cancerous skin diseases/Skin

cancer

Burden on the health care system DNA damage

etc.

Short Introduction (2/2)

Solar UVB radiation:

Benefits

Production of Vitamin D₃ against:

Multiple sclerosis/rheumatoid arthritis

Autoimmune diseases

Type 1 diabetes

Prostate, colon and breast cancer

etc.

Climatology of Vitamin D dose

as a function of the day of year

Vitamin D dose rates during the day (1/3)

LOCAL NOON

The Biological Effective Dose threshold (BED), as defined by Engelsen et al. (2005), is 3.46 mW/m²

McKenzie et al. (2008)

Even for more limited exposures the vitamin D produced would be nonzero. So the threshold/detection value is under discussion.

End of January

Mid November

Vitamin D dose rates during the day (2/3)

9 LOCAL TIME

Vitamin D dose rates during the day (3/3)

16 LOCAL TIME

Minimum recommended exposure for Vitamin D production(1/2)

LOCAL NOON ± 7.5 min

Skin type

		1 2	
Skin type	Color	0.4 -	LOCAL NOON ± 7.5 min Thessaloniki Bilthoven
I	Caucasian; blonde or red hair, freckles, fair		Jokioinen
II	skin, blue eyes Caucasian; blonde or red hair, freckles, fair	0.3 -	
III	skin, blue eyes or green eyes Darker Caucasian, light Asian	-	
IV V	Mediterranean, Asian, Hispanic Middle Eastern, Latin, light-skinned black,	VDED (kJ/m ²	
VI	Indian Dark-skinned black	5	
Sta	andard Vitamin D Dose	0.1	
1 SDD: recommended UV			
Dose for adequate vitamin D		0 -	
	hthesis in human skin defined Webb and Engelsen. (2006).		30 60 90 120 150 180 210 240 270 300 330 360 Day of year
,			

Minimum recommended exposure for Vitamin D production (2/2)

LOCAL NOON ± 30 min

Skin	Cobr
type	
Ι	Caucasian; blonde or red hair, freckles, fair
	skin, blue eyes
II	Caucasian; blonde or red hair, freckles, fair
	skin, blue eyes or green eyes
III	Darker Caucasian, light Asian
IV	Mediterranean, Asian, Hispanic
V	Middle Eastern, Latin, light-skinned black,
	Indian
VI	Dark-skinned black
γI	Dark-skinned black

The sunburn is defined by the Minimal Erythemal Dose (MED).

Relationship between Vitamin D and Erythemal dose rates

Conclusions (1/3)

- The maximum average daily VDED (from 3.5 at Jokioinen up to 8 kJ/m² at Thessaloniki) are observed during the second half of June.
- The winter averaged values of VDED are from 20 (Thessaloniki, Southern site) to 250 times (Jokioinen, Northern site) lower than those of summer.

Conclusions (2/3)

The average values of VDED rates around local noon reveal the sustainability of the cutaneous production of Vitamin D at Thessaloniki & Bilthoven.

At 9 & 16 local time this time period lies between 6.5 and 9.5 months at Jokioinen and Thessaloniki respectively.

Conclusions (3/3)

- Even for an exposure of one hour around local noon, no production of Vitamin D can be detected for skin types I-III in Bilthoven and Jokioinen throughout the year.
- When using MacLaughin et al. action spectrum, the daily values decrease from 2.5% up to 8% during winter and less than 2% in summer.

Thank you for your

- Attention and patience!
- Any questions/comments please...?

- □ Working team:
- A. Kazantzidis, A. Bais, S. Kazadzis
- P.N. den Outer, T. Koskela, H. Slaper. & me.