UV Quality Assurance within COST 726 Activities of working group 4

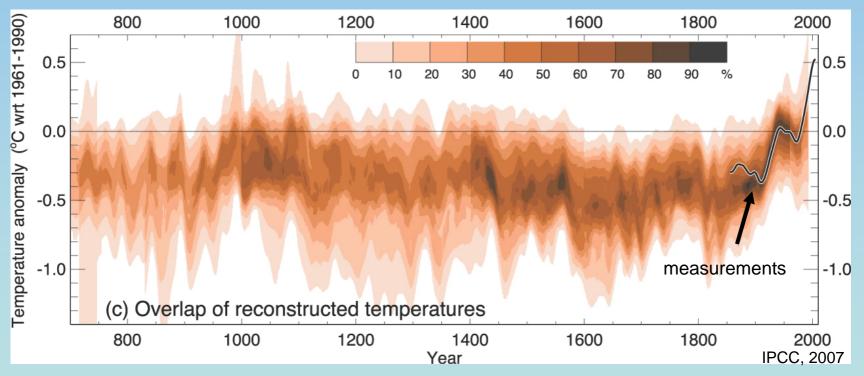
Julian Gröbner and WG4 participants

UV measurements within COST 726

1) Validation of modeling activities (Climatology)

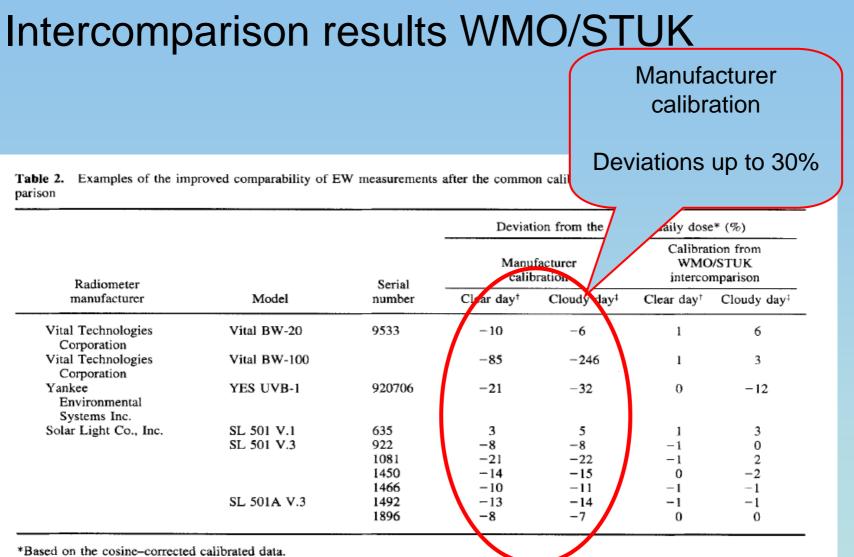
2) Determination of relationship CMF_UV to CMF_GLO

3) Future:


Improve measurement quality in view of future UV Climatologies.

An Analogy: Temperature reconstruction

Historical temperature reconstruction from proxy data:


Tree rings, ice cores, etc...

History of broadband filter radiometer calibration campaigns

- •1995 WMO/STUK intercomparison
 - 20 radiometers
- •1999 LAP/COST/WMO intercomparison
 - 29 radiometers
- •2006 PMOD_WRC/COST intercomparison
 - 36 radiometers

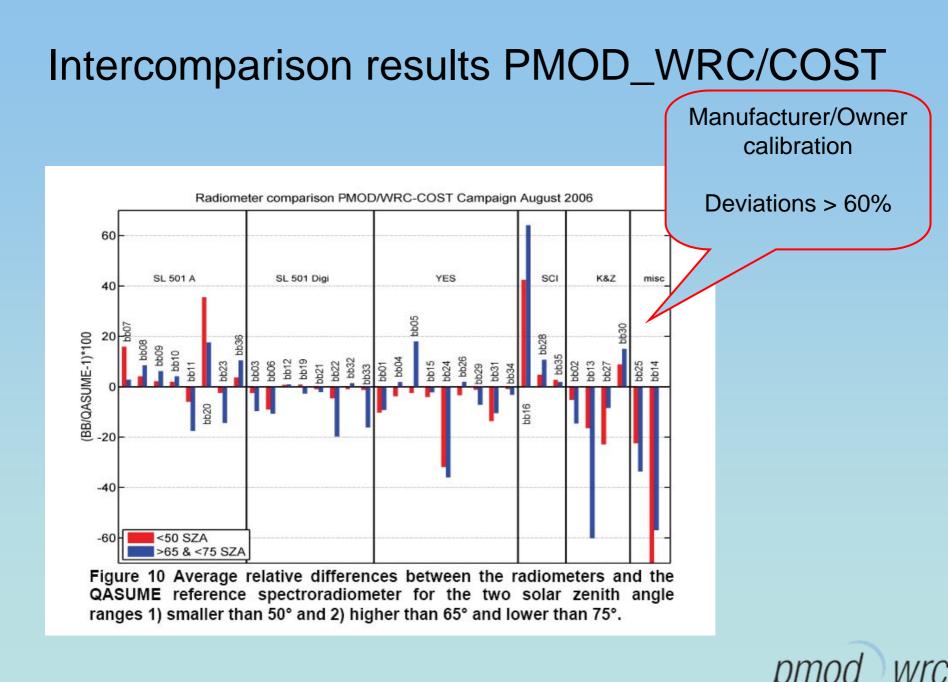
†Total daily dose 21.0 MED. Total ozone 315 DU.

‡Total daily dose 5.5 MED. Total ozone 300 DU.

Leszczynski et al., Photochem.Photobiol. 1998

Intercomparison results LAP/COST/WMO

Manufacturer/Owner calibration


Table 2: CIE-based Calibration factors of the instruments that took LAP/COST/WMO intercomparison or erythemal radiomete

Deviations up to 30%

Instrument	Serial						
Туре	Number	Certificate	LAP 1999 (327 DU)	LAP 1999 (270 DU)	Change (%)		
SL 501	0629	1.089	0.999	1.021	-6.3		
	0635	0.98 ^s	0.882	0.889	-9.3		
	0922	1.08 ^s	0.965	0.990	-8.3		Γ
	0935	1.000	0.952	0.979	-2.1		1
	1081	1.26 ^s	1.011	1.024	-18.7	R	1
	1098	1.000	0.919	0.933	-6.7	AL1	1
	1120	1.20 ^s	1.227	1.238	3.2	PL2	2
	1240	1.000	1.159	1.178	17.8	AT4	4
	1451	1.000	1.018	1.024	2.4	DE2	2
	1466	1.11 ^s	1.065	1.074	-3.3	FI1	
	1483	1.000	1.016	1.028	2.8	AT2	2
	1485	1.000	0.962	0.972	-2.8	AT1	1
	1875	1.000	0.973	0.982	-1.8	CZ1	1
	2706	1.000	1.258	1.278	27.8	AT3	3
	2733	1.114	1.066	1.064	-4.5	CZ2	2
	3749	1.000	0.828	0.840	-16.0	PT1	1
SL 501A	1493	0.214	0.220	0.225	5.1	CH1	1
	4388	0.230	0.209	0.212	-8.0	SE2	2

Bais et al., Gaw report 141, 1999

Summary from these intercomparisons

Average difference (median) and standard deviation between original calibration and campaign reference (all radiometers):

1995	STUK	-11 ± 24%
1999	LAP	-3 ± 11%
2006	PMOD	-1 ± 14%

Radiometers present at several intercomparisons:

Inst ID	STUK(1995)	LAP(1999)	PMOD(2006)
635 (SL)	0.98	-11% 0.88 +11%	0.98
922 (SL)	1.08	-10%0.97 +7%	1.04
935 (SL)		0.95 +15%	1.10
1493 (SL)		0.220	<mark>∕→</mark> 0.220
970839 (YES)		0.121	0.118

Conclusions from these intercomparisons

1) Small but definite improvements. Individual radiometers still show very large discrepancies.

2) Broadband radiometers are unstable ?

unlikely for deviations >20%

3) Manufacturer calibration is not correct?

There are known cases.

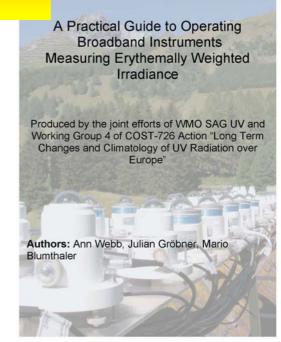
4) Operators do not apply the correct radiometer equation ?

WG4 in COST 726

Goal: Harmonize UV measurements in Europe

- Broadband radiometers
- Narrowband filter Radiometers
- Spectral measurements

I – Broadband radiometer equation



$$E_{CIE} = (U - U_{offset}) \cdot C \cdot f_n (SZA, T_{O3}) \cdot \epsilon(T) \cdot Coscor(SZA)$$

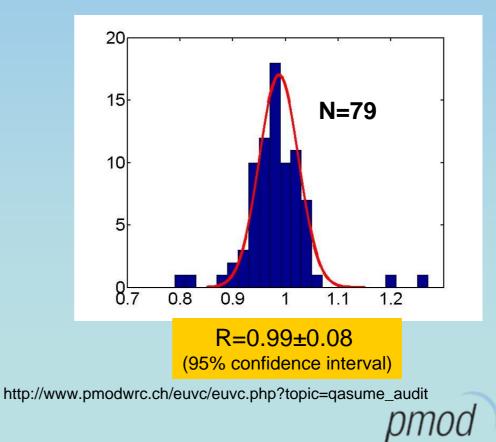
The calibration will result in values for:

- 1) Calibration factor **C** [Wm⁻²V⁻¹]
- Detector to erythemal weighted response conversion matrix f_n (SZA, T₀₃) normalised to SZA 40° and 300 DU total column ozone
- 3) Cosine correction function Coscor(SZA)
- 4) ε(T) temperature correction function (optional)

Broadband radiometer uncertainties

Calibration uncertainty ~7-16%

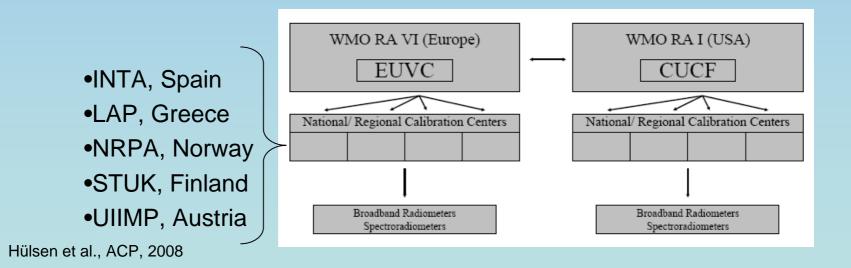

	Table 1. Uncertainty Budget for the Calibration of Broadband Radiometers (SZA < 75 deg)		
	Contribution	Relative Standard Uncertainty (%)	
	Uncertainty of C	<u>,</u>	
	Variability	1.8	
	Reference spectroradiometer	2.5	
	Combined calibration uncertainty	3.1	
	Uncertainty of the erythemal weighted irradiance		
	Conversion function f_n -SRF uncertainty	0.7	
	Conversion function f_n -model uncertainty	0.9	
	Conversion function f_n -TO ₃ uncertainty (±10 DU)	1.2	
Instrument dependent	Cosine correction	0.9 - 7.2	
	Combined total uncertainty Total expanded uncertainty $(k = 2)$	2.6 8.0 7.2–16.0	

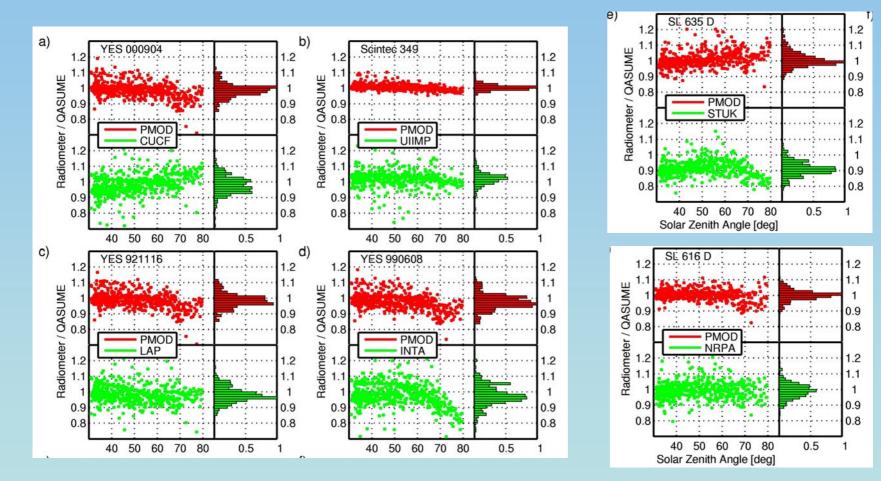

Hülsen and Gröbner, Appl. Opt., 2007.

omod wrc

European UV Quality Assurance Program

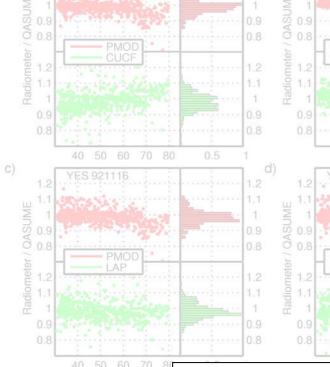
On site comparison with the QASUME reference spectroradiometer 40 site visits between 2002 and 2008




European UV Quality Assurance Program

As of January 1st 2008

The European UV Calibration Center (EUVC) at PMOD/WRC is formally recognised by the WMO as **GAW regional UV calibration** center for Europe.


Intercomparison of seven UV calibration facilities in Europe and the U.S.A.

Intercomparison of seven UV calibration facilities in Europe and the U.S.A.

Conclusions:

Measurements of erythemal weighted irradiance agree to within $\pm 2\%$ for six out seven institutes. One Institute is lower by 9% relative to PMOD/WRC.

Table 5. Summary results of the outdoor measurement campaign (see also Fig. 4). The second and third columns list the mean and standard deviation of the erythemally weighted irradiances ratios between the radiometer and the QASUME reference spectroradiometer, calibrated by PMOD/WRC and the owners respectively.

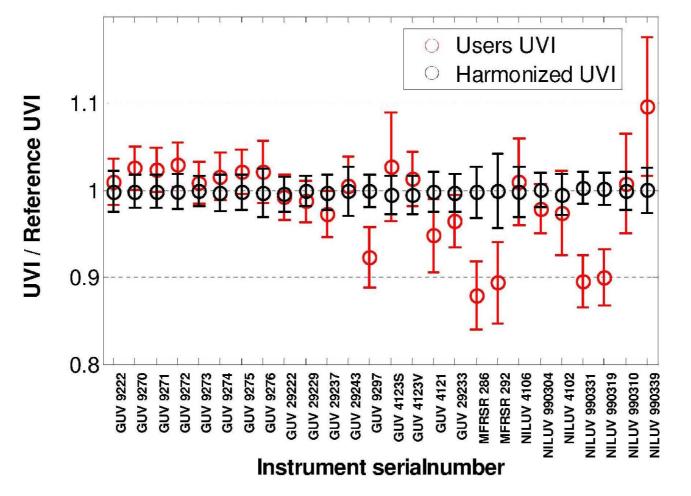
Instrument	PMOD/WRC	Owner
YES 000904	0.985 ± 0.049	0.982 ± 0.063
Scintec 349	1.004 ± 0.019	1.020 ± 0.054
YES 921116	0.983 ± 0.050	0.981 ± 0.061
YES 990608	0.975 ± 0.052	0.977 ± 0.074
SL 635 D	1.006 ± 0.049	0.912 ± 0.051
SL 616 D	1.000 ± 0.035	0.990 ± 0.071

G. Hülsen, J. Gröbner, A. Bais, M. Blumthaler, P. Disterhoft, B. Johnsen, K. O. Lantz, C. Meleti, J. Schreder, J. M. Vilaplana Guerrero, and L. Ylianttila, Intercomparison of erythemal broadband radiometers calibrated by seven UV calibration facilities in Europe and the USA, **Atmos. Chem. Phys.**, **8**, 4865-4875, 2008

FARIN Intercomparison of multiband filter radiometers

Organised by NRPA, Norway in Oslo in Summer 2005. 33 participating Instruments

Multiband filter radiometers: GUV, NILU-UV, UV-MFRSR


Instrument	Number of channels	Nominal wavelengths, nm	FWHM, nm	Manufacturer
NILU-UVI	6	305, 312, 320, 340, 380, PAR (400-700)	10	NILU Products AS
NILU-UVII	6	305, 312, 320, 340, 380, PAR (400-700)	10	NILU Products AS
GUV-511	5	305, 320, 340, 380, PAR (400-700)	10	Biospherical Instruments, Inc
GUV-541	5	305, 312, 320, 340, 380	10	Biospherical Instruments, Inc
GUV-2511	7 (8)	305, (305), 313, 320, 340, 380, 395, PAR (400-700)	10	Biospherical Instruments, Inc
MFRSR	7	300, 305, 311, 317, 325, 332, 368	2	Yankee Environmental System, Inc

courtesy B. Johnsen, NRPA

FARIN Intercomparison Results:

B. Johnsen et al., JGR, 2007.

omod) wrc

National Spanish Intercomparison of broadband radiometers in September 2007

Figure 1: "El Arenosillo" Station, in Huelva, south-western Spain

omod) wrc

National Spanish Intercomparison of broadband radiometers in September 2007

Figure 10: Broadband radiometers installed on the terrace of El Arenosillo Station.

Summary COST 726 WG4 activities

- 1) European UV Calibration Center has been created under the auspices of the GAW Program of the WMO to harmonize UV measurements in Europe.
- 2) UV Quality Assurance program implemented.
- 3) Uniform broadband filter radiometer equation formulated.
- 4) 3 filter radiometer campaigns were held between 2005 and 2007.
- 5) 4 COST reports published (partly in collaboration with the WMO).
- 6) 3 refereed publications.

