Comparison of the daily direct irradiance and sunshine duration

Kalju Eerme
Tartu Observatory, Estonia

Content of presentation

- The daily sums on sunshine duration and direct irradiance measured at Tartu-Tõravere meteorological station in 1967-2008 studied
- How much differ the daily relative sunshine duration and daily relative sum of direct irradiance due to the daily variations of cloud amount?
- Study on monthly basis

Daily relative sum of direct irradiance and relative sunshine duration

- Both as the ratios relative to the value of corresponding normal cloudless day $I^{\prime} / I_{\text {clear }}^{\prime}$ and Sundur/Sundur ${ }_{\text {clear }}$
- The first expresses the daily amount of direct irradiance energy and the second the daily total time of sunhine
- The both ratios and their ratio were calculated
- Zero and infinite values excluded, also those corresponding to Sundur/Sundur clear $^{<}<0.1$

Monthly numbers of days Sundur/Sundur ${ }_{\text {clear }}$ above 0.1 and between 0.1-0.8

Results

- Data for 1967-2008 treated (still part of them)
- For Sundur/Sundur ${ }_{\text {clear }}<0.1$ the ratio varied in the range 0.2 to 5 . Further excluded
- For Sundur/Sundur clear >0.8 the values of ratio close to 1 . Mean value March to September around 0.90 , in winter slightly above 1
- For $0.1<$ Sundur/Sundur $_{\text {clear }}<0.8$ the ratios smaller, mean in March to September 0.73 (annual values $0.69-0.79$), in winter close to 1

Monthly mean values of the ratio $I^{\prime} / I_{\text {clear }}$ to Sundur/Sundur ${ }_{\text {clear }}$

Examples of yearly distribution of the monthly mean of the ratio

Numerical summary measures in Exploratory Data Analysis (EDA)

- The goal of EDA to get insight into the processes behind the numerical data
- The numerical summaries of location, spread and symmetry
- Summary measures must be robust (nonsensitive to the variations in distribution) and resistant (nonsensitive to extreme values)
- Conventional mean is not the best measure of location

More robust summary measures

- Median
- Quartiles based measures
- Trimean (trimmed median)
- Trimean $=\left(\mathrm{q}_{0.25}+2 \mathrm{q}_{0.5}+\mathrm{q}_{0.75}\right) / 4$
- Spread measures instead StD
- Interquartile range $\mathrm{IQR}=\mathrm{q}_{0.75}-\mathrm{q}_{0.25}$
- Median Abs. Deviation MAD = median $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{q}_{0.5}\right|$

Trimean to mean of the ratios in May-June and July-August

Comparison of mean, median and trimean for some other quantities used as proxy in UV reconstruction

- Daily relative sum of broadband global irradiance
- Winter, summer half-year and autumnal values are compared for 1955-2008
- Considering the trimean as most robust measure the conventional mean overestimates the $Q / Q_{\text {clear }}$ during the dark half-year and underestimates during the bright half-year
- Mean/trimean ratio in winter 1.05 (0.96-1.18) in autumn 1.09 (0.99-1.25) and in summer 0.975 (0.94-1.02)

$G / G_{\text {clear }} P D F$ in most fine-weather summer half-years

G/G $\boldsymbol{G}_{\text {clear }}$ PDF in most cloudy summer half-years

G/G $\boldsymbol{G}_{\text {clear }}$ PDF in most cloudy winter half-years

Mean, median and trimean of spring+summer $G / G_{\text {clear }}$ in 1955-2008

Mean, median and trimean of autumnal G/G $\boldsymbol{G}_{\text {clear }}$ in 1955-2008

Mean/trimean ratios

Aerosol optical depth

- AERONET data 2002-2008 for Tõravere ($58^{\circ} 16^{\prime} \mathrm{N}, 26^{\circ} 28^{\prime}$) used. About 900 values

	Mean	Median	Trimean	Mode
340 nm	0.261	0.198	0.21	0.153
500 nm	0.165	0.12	0.129	0.113

- Monthly distributions vary strongly. The biases larger for larger spreads

AOD all data histogram

Mean, median and trimean of monthly AOD

Monthly AOD histogram

340 nm, September 2002

Total ozone

- The monthly satellite data since used
- The Mean/Trimean ratio

within $\pm 1 \%$
within $\pm 2 \%$
more than 2%
65.5 \%
95.5%
4.5%

- For the $I^{\prime} / I^{\prime}{ }_{\text {clear }}$ and Sundur/Sundur clear ratio also all three measures agree well

