

Aristotle University of Thessaloniki

Laboratory of Atmospheric Physics

Calculations of the human Vitamin D exposure from UV spectral measurements at three European stations

Melina Zebila

Contents *

- Short Introduction
- Climatology of Vitamin D dose
- Vitamin D dose rates during the day
- Minimum recommended exposure for Vitamin D production
- Relationship between Vitamin D and Erythemal dose rates
- Conclusions

* based on the accepted paper in the "Journal of Photochemistry and Photobiology" by Kazantzidis et al.

Short Introduction

Solar UVB radiation:

Dangers

Cataracts and corneal injuries Non cancerous skin diseases / Skin cancer Burden on the health care system DNA damage

etc.

Short Introduction

Solar UVB radiation: Benefits

Production of Vitamin D₃ against Multiple sclerosis / rheumatoid arthritis Type 1 diabetes Prostate, colon and breast cancer etc.

Climatology of Vitamin D dose

Thessaloniki Bilthoven okioinen Stations' Latitudes Summer solstice VDED (kJ/m²) Thessaloniki:40,39N Bilthoven: 52,13N Jokioinen: 60,82N 60 90 120 210 240 270 300 330 180 DAY OF YEAR Vitamin D effective dose (VDED)

as a function of the day of year

Vitamin D dose rates during the day

LOCAL NOON

Vitamin D dose rates during the day

9 LOCAL TIME

Vitamin D dose rates during the day

16 LOCAL TIME

Minimum recommended exposure for Vitamin D production

LOCAL NOON ± 7.5 min

		0.2 —		٦
Skin	Color		LOCAL NOON ± 7.5 min	VI
type		-		
Ι	Caucasian; blonde or red hair, freckles, fair		Thessaloniki	
п	Caucasian; blon de or red hair, freckles, fair	0.15 —	- Biltnoven Jokioinen	
III	skin, blue eyes or green eyes Darker Caucasian, light Asian	J/m ²)		-v <u>v</u>
IV V	Mediterranean, Asian, Hispanic Middle Eastern, Latin, light-skinned black,) 0.1 – ص		in typ
VI	Indian Dark-skinned black			-IV Φ
0.05 – Standard Vitamin D Dose				- П - І

Day of year

1 SDD: recommended UV Dose for adequate vitamin D synthesis in human skin

Minimum recommended exposure for Vitamin D production

LOCAL NOON ± 30 min

Relationship between Vitamin D and Erythemal dose rates

- Can we estimate VDED rates from erythemal dose rates?
- Why isn't it a linear relationship?

A linear fit can introduce uncertainties from -50% up to +30%

Conclusions

- Usage of measurements under real atmospheric conditions for 10 to 16 years!
- The winter averaged values of VDED are from 20 (Thessaloniki) to 250 times (Jokioinen) lower than those of summer.

Conclusions

- Cutaneous Vitamin D cannot be produced for latitudes above 50° during winter, "Vitamin D winter".
- When using MacLaughin et al. action spectrum, the daily values decrease from 2.5% up to 8% during winter regarding to CIE's and less than 2% in summer.

Thank you for your

Attention and

Patience

