Ultraviolet Radiation

in Switzerland

Daniel Walker ^{1,2}, Laurent Vuilleumier ¹

- ¹ Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz
- ² Institut für Atmosphäre und Klima, ETH Zürich

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Motivation for our studies:

- UV impacts public health:
 - skin
 - eyes
 - immune system
 - Vitamin D production

Images: "Global Solar UV Index: A Practical Guide, WHO"

- Situation in Switzerland:
 - CH shows the 2nd highest incidence rate of malignant melanoma in Europe (worldwide 5th)
 - around 250 yearly die as a result of skin cancer (Schweizer Krebsliga, 2004)

Medics and policy maker request more information about the spatial distribution and temporal development of UV radiation

- UV modeling:
 - using libRadtran as radiative transfer model (RTM)
 - works well for clearsky conditions
 - achieve rmse: 4.6 7.2 %
- Cloud influence:
 - treating cloud effects by the use of a SW_{glo} as proxy (Koepke et al. 2006, SPIE 6362)
 - investigate the relationship between SW and erythemal UV radiation

Our Model:

Cloud modification factor:

- estimating cloud effect by cloud modification factors (CMFs)

$$CMF = \frac{irradiance_{allsky}}{irradiance_{clearsky}}$$

$$CMF_{\rm UV} = \frac{UV_{\rm obs}}{UV_{\rm mod}}, \quad CMF_{\rm SW} = \frac{SW_{\rm obs}}{SW_{\rm mod}}$$

Relationships CMF_{UV} and CMF_{SW} :

$$UV_{\text{allsky}} = f\left(UV_{\text{clearsky}}, CMF_{\text{SW}}\right)$$

Relationship: Shortwave ↔ Ultraviolet:

Validation:

- Time resolution:
 - for model derivation: 10' data used
 - this allows flexibility to aggregate 10'-1h-1d
- Findings:
 - performance of the method is depending on solar zenith angle
 - better correspondence for high sun elevation
 - skill is better for daily values than for 10'-data

	22°-42°	42°-54°	54°-64°	64°-72°
Payerne	10.2%	10.3%	10.6%	12.6%
Davos	9.1%	9.8%	10.9%	11.6%
Locarno	9.0%	8.9%	10.0%	12.8%
Jungfraujoch		7.7%	22.0%	9.4%

well then...

- PhD thesis in the framework of COST-726
- derived an all-weather UV model
- high degree of generalization
- validation confirms accuracy (9-13% on 10')
- model capable to:
 - * reconstruct UV in CH back to 1980
 - * high time resolution (10') \rightarrow we keep flexibility
 - * minimum input-information (SW_{obs}, model data)
 - * independent of station
 - * estimation at any location where input data available

Thank you for your attention