

Mapping and on-line dissemination of biologically effective UV radiation data over Poland

(exampled by erythemal UV dose)

Jakub Walawender 1, 2

¹ Satellite Remote Sensing Centre, Institute of Meteorology and Water Management, ² Department of Climatology Institute of Geography and Spatial Management, Jagiellonian University

Krakow, Poland

Presentation Contents

- SR/UV measurements in Poland
- UV recontstruction
- Data complimentary analysis
- Spatial interpolation methods
- Prediction error evaluation
- Output map examples
- On-line dissemination strategy
- Conclusion / future challenges

Solar radiation measurements, UV reconstruction

- The UV measurements with Solar Light UV Biometer started from 1994.
- These measurements were used for reconstruction of UV radiation daily doses.
 - UV daily doses where reconstructed for the period of 1985-2001

and for different action spectra.

Data Complimentary Analysis

Parameter: Mean monthly UV daily doses for erythemal action spectrum [21 sample points, 17 years]

Spatial interpolation tests were performed for the selected years. ArcGIS 9.2 with Geostatistical Analyst was used

Interpolation Method

Universal kriging assumes a general linear trend model.

Therefore is said to be very useful and efficient in case of extrapolation beyond the area narrowed by the sample points

Looking for predictor variables

Universal Kriging or CoKriging?

Ery-1990	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
UK (RMSE)	24.33	47.62	131.90	140.50	144.90	179.80	204.40	118.60	90.18	62.71	29.97	17.59
UK (MPV)	124.05	409.18	872.64	1320.35	2619.03	2687.87	2543.57	2176.55	907.87	659.30	143.19	106.16
UCoK (RMSE)	23.99	48.35	126.50	139.90	141.80	176.80	205.10	119.60	90.48	59.83	28.28	14.78
UCoK (MPV)	129.93	422.62	898.78	1324.10	2585.75	2668.91	2548.59	2179.98	912.59	677.30	148.78	113.20

Ery-2000	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
UK (RMSE)	25.79	43.46	92.20	172.80	128.10	157.40	167.40	127.20	65.02	38.29	22.79	13.84
UK (MPV)	145.28	333.96	760.03	1918.95	2787.47	3333.25	2144.32	2434.41	1292.69	663.38	192.39	89.22
UCoK (RMSE)	24.38	38.38	83.40	163.60	122.20	154.10	168.40	121.40	67.18	34.24	20.72	11.86
UCoK (MPV)	152.69	347.01	787.42	1957.35	2790.66	3348.46	2151.15	2450.60	1305.15	664.95	197.43	93.39

The best empirical semivariogram model selection

Models	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Circular	-0.46	-0.94	-1.41	-1.89	0.04	-0.44	1.35	-0.70	0.14	-0.45	0.01	-0.08
Spherical	-0.52	-0.96	-1.63	-2.04	0.09	-1.34	1.30	-0.45	0.16	-0.47	0.00	0.08
Tetraspherical	-0.56	-1.01	-1.51	-1.79	0.09	-1.34	1.35	-0.25	0.18	-1.03	-0.06	-0.07
Pentaspherical	-0.36	-0.95	-1.04	-1.29	0.09	-1.69	1.40	-0.25	0.23	-1.31	-0.11	-0.08
Exponential	-0.74	-1.56	-2.49	-2.24	-0.96	-3.69	0.80	-0.65	-0.05	-1.22	-0.32	-0.37
Gaussian	-0.02	0.10	0.15	0.46	0.19	2.31	2.10	0.90	-0.01	0.43	-0.11	-0.11
Rational Quadratic	-0.50	-1.11	-1.46	-1.04	-1.11	-1.19	1.80	-0.55	-0.04	-0.86	-0.16	0.06
Hole Effect	2.23	3.70	6.23	6.11	0.79	1.76	-5.65	0.70	-0.23	2.44	0.66	0.28
K-Bessel	-0.35	0.28	-0.01	-0.09	0.04	2.16	2.10	2.55	-0.09	0.76	-0.07	0.17
J-Bessel	1.65	1.78	3.03	3.51	0.74	1.71	-8.65	-3.90	-0.17	0.75	0.18	-0.08
Stable	-0.35	0.64	0.16	0.26	0.04	1.71	2.10	2.60	-0.12	0.97	-0.01	0.02

Method: Universal Cokriging (var.: elevation, latitude) with exponential semivariogram

Walawender J. – UVBE Mapping

model

Method: Universal Kriging with J-Bessel semivariogram model

Web mapping

Web Mapping = WebGIS = Internet GIS:

- solution for delivering maps, GIS data and services via Internet
- based on client/server architecture

Internet Atlas (e-Atlas) = a set of internet maps; larger web-based project

Advantages of e-Atlases:

- □ Can reach wider audience,
- Cheaper production,
- Updates less expensive and quicker
- provide a larger number of maps and map types
- integrate with and benefit from other web resources
- Sometimes offer raw data downloads and possibility of printing features on demand

Selected on-line dissemination tools

HTML Image Mapper NG (Alta4 Geoinformatik AG)

- ArcGIS plug-in
- Easy and fast way to transform ArcGIS maps and data into interactive internet maps
- Output is pure HTML and JavaScript
- Works from CD-ROM and DVD-ROM (offline productions)
- Allows to define quality and interactions the users should get.
- User view data by means of web browser.

Google earth (Keyhole Inc./Google)

- □ Is the most popular virtual globe browser
- User view data by means of google earth browser – a special application which needs to be installed on the user's machine.
- Allows users to interactively display and investigate geographic data (primarily satellite and aerial images and terrain models, but also 2- and 3-D vector data)
- Introduces own XML-based format (.kml, kmz)
- ArcGIS 9.2 maps can be directly exported to .kml/.kmz format
- Internet connection is needed, off-line productions impossible
- Very popular among internet users around the World, sometimes taken as unprofessional

HTML Image Mapper NG - internet service

Google Earth – internet service

Conclusion and future challanges

- □ GIS is very useful for applications on UV climatology
- Universal Cokriging (additional variables: elevation and latitude) with exponential semivariogram model seems to be the most reliable interpolation method of the Erythemal UV dose in winter season so far.
- Spatial distribution of the erythemal UV dose in summer season not easy to explain (possible reason - cloud cover?)
- Selected web mapping tools meet requirements for publishing UV radiation maps on internet
- More interpolation method will be tested, including residual kriging
- Satellite cloud mask will be applied to explain spatial distribution of the erythemal dose in summer season
- Another action spectra will be included in the UVBE radiation e-Atlas:
 VitD production, DNA damage
- □ Knowledge on UV radiation needed!

Thank you for your attention!

Jakub Walawender

Jakub.walawender@imgw.pl

+48 012 63-98-125